THE BELLFRAME OLD CHURCH (ST MICHAEL) BRAMCOTE NOTTINGHAMSHIRE

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS

Alison Arnold, Robert Howard, and George Dawson
NGR: SK 5082937483
JUNE 2016

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE
 BELLFRAME OF THE OLD CHURCH (ST MICHAEL), BRAMCOTE, NOTTINGHAMSHIRE

ALISON ARNOLD
ROBERT HOWARD
GEORGE DAWSON

SUMMARY

Dendrochronological analysis undertaken on samples taken from timbers of the bellframe at this church resulted in the construction and dating of two site sequences. Site sequence BRCCSQ01 contains four samples and spans the period AD 1504-1586 and site sequence BRCCSQ02 contains six samples and spans the period AD $1393-$ 1586. Interpretation of sapwood suggests felling of timbers utilised in c AD 1590.

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF THE OLD CHURCH (ST MICHAEL), BRAMCOTE, NOTTINGHAMSHIRE

INTRODUCTION

The old church of Bramcote, located about 8 km west of the city of Nottingham (Figs 1 \& 2), is thought to date from the fourteenth century. Once consisting of nave, chancel, porch, and tower, only the tower now survives. The church was abandoned in AD 1861 with the nave, chancel, and south porch being demolished the following year (http://southwellchurches.nottingham.ac.uk/bramcote-old-church/hintro.php).

The bellframe

The oak bellframe for three bells is of queen-post, short headed design, Pickford Group 3.E (Fig 3). It is of one build, though there are some later replacements of timber (Fig 4). All joints are pegged except for the later work.

Short-headed frames are now extremely rare in Nottinghamshire, with this frame and those at Ratcliffe on Soar and Lambley (all Pickford Group 3.E) being the only queen posted ones remaining. Carlton on Trent is also a short-headed frame but of king posted type (Pickford Group 3.B).

Some of the timbers of the Bramcote frame have unused mortises and there are two possible explanations for this:

1. The timber is reused, from a previous king posted frame
2. The disused mortise is symmetrical with the one the other face of the post, so it may actually show that the frame was originally planned as a king post frame, but the carpenter changed his mind and built a queen posted frame.

As this timber does not appear to be substantially different from the rest of the queen posts, I am inclined towards the latter explanation.

One transom is dated 1829 and it is clear that this is a later replacement as it does not fit comfortably in the cut-outs on the truss braces. Associated with this are transom braces between each pair of outer pits, nailed to the braces, these being attempts to stabilise the frame from sideways rocking. There is also an iron bar through the centre of each truss, again attempts to stabilise the frame.

The frame may date from the late-sixteenth century, and may have been built when the treble (and possibly second) were recast in AD 1600.

The bells

The bells that were originally in the frame were removed in AD 1861, and recast by Taylors of Loughborough and then installed in the newly built church of St Michael. The old bells were inscribed:

Treble. GOD SAVE THE CHVRCH 1600 [40]
2. + IHESVS BE OVR SPEED [40]

TENOR. THOS HEDDERLY FOUNDER. WM. BURTON C. W. 1750
[BADGE NUMBERS ARE TAKEN FROM CHURCH BELLS OF NOTTINGHAMSHIRE, PART 1]

Physical data:

	Diameter	Weight (cwt.qr.lb)
Treble.	$24 "$	2.1 .21
2.	$27^{\prime \prime}$	3.1 .6
Tenor.	$28.75^{\prime \prime}$	4.2 .4

[Data from the John Taylor Bellfoundry Archive].
The treble and second bells were cast by Henry II Oldfield of Nottingham, possibly at the same time. The tenor was cast by Thomas I Hedderly, also of Nottingham.

PRINCIPLES OF TREE-RING DATING

Tree-ring dating relies on a few simple, but fundamental, principles. Firstly, as is commonly known, trees (particularly oak trees) grow by adding one, and only one, growth-ring to their circumference each, and every, year. Each new annual growth-ring is added to the outside of the previous year's growth just below the bark. The width of this annual growth-ring is largely, though not exclusively, determined by the weather conditions during the growth period (roughly March to September). In general, good conditions produce wider rings and poor conditions produce narrower rings. Thus, over the lifetime of a tree, the annual growth-rings display a climatically determined pattern. Furthermore, and importantly, all trees growing in the same area at the same time will
be influenced by the same growing conditions and the annual growth-rings of all of them will respond in a similar, though not identical, way.

Secondly, because the weather over any number of consecutive years is unique, so too is the growth pattern of the tree. The pattern of a short period of growth, 20 or 30 consecutive years, might conceivably be repeated two or even three times in the last one thousand years. A short pattern might also be repeated at different time periods in different parts of the country because of differences in regional micro-climates. It is less likely, however, that such problems would occur with the pattern of a longer period of growth, that is, anything in excess of 60 years or so. In essence, a short period of growth, anything less than 50 rings, is not reliable, and the longer the period of time under comparison the better.

The third principle of tree-ring dating is that, until the early-to mid-nineteenth century, builders of timber-framed houses usually obtained all the wood needed for a given structure by felling the necessary trees in a single operation from one patch of woodland or from closely adjacent woods. Furthermore, and contrary to popular belief, the timber was used "green" and without seasoning, and there was very little long-term storage as in timber-yards of today. This fact has been well established from a number of studies where tree-ring dating has been undertaken in conjunction with documentary studies. Thus, establishing the felling date for a group of timbers gives a very precise indication of the date of their use in a building.

Tree-ring dating relies on obtaining the growth pattern of trees from sample timbers of unknown date by measuring the width of the annual growth-rings. This is done to a tolerance of $1 / 100$ of a millimetre. The growth patterns of these samples of unknown date are then compared with a series of reference patterns or chronologies, the date of each ring of which is known. When a sample "cross-matches" repeatedly at the same date against a series of different relevant reference chronologies the sample can be said to be dated. The degree of cross-matching, that is the measure of similarity between sample and reference is denoted by a " t-value"; the higher the value the greater the similarity. The greater the similarity the greater is the probability that the patterns of the samples and references have been produced by growing under the same conditions at the same time. The statistically accepted fully reliable minimum t-value is 3.5 .

However, rather than attempt to date each sample individually it is usual to first compare all the samples from a single building, or phases of a building, with one another, and attempt to cross-match each one with all the others from the same phase or building. When samples from the same phase do cross-match with each other they are combined at their matching positions to form what is known as a "site chronology". As with any set of data, this has the effect of reducing the anomalies of any one individual (brought about in the case of tree-rings by some non-climatic influence) and enhances the overall climatic signal. As stated above, it is the climate that gives the growth pattern its distinctive pattern. The greater the number of samples in a site chronology
the greater is the climatic signal of the group and the weaker is the non-climatic input of any one individual.

Furthermore, combining samples in this way to make a site chronology usually has the effect of increasing the time-span that is under comparison. As also mentioned above, the longer the period of growth under consideration, the greater the certainty of the cross-match. Any site chronology with less than about 55 rings is generally too short for satisfactory analysis.

SAMPLING STRATEGY

In 1994, 12 core samples were taken from the timbers of this bellframe. Each sample was given the code BRC-C and numbered 01-12, with the results reported at that time. As part of the recent Southwell Churches History Project, the data from this site has been re-analysed to present standards and results reported in this more up to date format. The location of all samples was noted at the time of sampling and have been marked on Figures 5-9. Further details relating to these samples can be found in Table 1.

ANALYSIS \& RESULTS

In 1994, all samples had been prepared by sanding and polishing and their growth ring widths measured. Following present guidelines, one of the samples, BRC-C08, has too few growth rings to make secure dating a possibility and so was not re-analysed. The remaining 11 samples were compared against each other at which point ten of these matched to form two groups.

Firstly, four samples matched each other and were combined at the relevant offset positions to form BRCCQ01, a site sequence of 83 rings (Fig 10). This site sequence was then compared against a series of relevant reference chronologies for oak where it was found to match consistently and securely at a first-ring date of AD 1504 and a lastmeasured ring date of AD 1586. The evidence for this dating is given by the t-values in Table 2.

Secondly, six samples matched each other and were again combined at the relevant offset positions to form BRCCSQ02, a site sequence of 194 rings (Fig 11). This site sequence was found to span the period AD 1393-1586 when compared against the reference material. The evidence for this dating is given by the t-values in Table 3.

Attempts were then made to date the remaining ungrouped sample (BRC-C03) by comparing it individually against the reference chronologies but no secure match was noted and this sample remains undated.

INTERPRETATION

Tree-ring dating has successfully dated ten samples (Fig 12). Unfortunately, none of the dated samples retained complete sapwood and so an absolute felling date cannot be given. However, four of them had come from timbers which did have complete sapwood but some of these softer, outer rings had been lost during the sampling process. The number of lost rings were estimated for two of these samples (BRC-C01 and BRC-C05) as being only three or four rings. Both of these samples have the lastmeasured ring date of AD 1586 giving an estimated felling date for the two timbers represented of $c \mathrm{AD} 1590$. Estimated number of lost rings for the other two samples from timbers with complete sapwood are not known.

Four of the other dated samples have the heartwood/sapwood boundary ring, which in all cases is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1563, allowing an estimated felling date to be calculated for the four timbers represented between the range AD 1578-1603, consistent with these timbers also having been felled in c AD 1590.

The other four dated samples do not have the heartwood/sapwood boundary ring and so estimated felling date ranges cannot be calculated except to say with last-measured heartwood ring dates ranging from AD 1490 to AD 1559 it is possible and extremely likely that these timbers were also felled in c AD 1590.

The felling date range has been calculated using the estimate that 95% of the mature trees in this region have 15-40 sapwood rings.

DISCUSSION

The dendrochronology has shown that the bellframe at Bramcote old church utilises timber felled in c AD 1590, with construction likely to have followed shortly after. Some of the beams have empty mortises suggesting, either the use of reused timber within the frame or alternatively, demonstrate a change in design between the cutting of the mortises and construction. With the tree-ring dating showing all sampled timbers are likely to be coeveal there is no support for the incorporation of reused timber which may add weight to suggestion that the empty mortises demonstrate a change in design.

The frame had previously been stylistically dated to the late-sixteenth century, with the suggestion being that it might date to the recasting of the treble and possibly the second bell (AD 1600). Although, on the evidence of the tree-ring dating, the frame is perhaps ten years earlier than the bell/s it is likely that they belong to the same programme of work, with the bells cast specifically for the new frame, perhaps when funds were available.

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G 2005 The Tree-ring Dating of a Number of Bellframes in Leicestershire, Centre for Archaeol Rep, 5/2005

Arnold and Howard 2006 unpubl Tree-ring Analysis of Timbers from Newnham Hall Farm, Newnham Murren, near Wallingford, Oxfordshire, unpublished computer file CMGBSQ01, NTRDL

Arnold, A J, Howard, R E, and Litton, C D, 2008 Nottingham Tree-ring Dating Laboratory Vernacular Architect, 39, 119-28

Arnold, A J, Howard, R E, and Tyers, C, 2015 The Great Tythe Barn, Bolton Abbey, North Yorkshire: Tree-ring Analysis of Timbers, Historic England Res Rep Ser, 48/2015

Bramcote-old-church, http://southwellchurches.nottingham.ac.uk/bramcote-oldchurch/hintro.php

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1989 Nottingham University Tree-Ring Dating Laboratory: Results, Vernacular Architect, 20, 39-41

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1986 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 17, 52-3

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 25, 36-40

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1995a Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 26, 47-53

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1995b Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1994-95, Vernacular Architect, 26, 53-4

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1996a Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1995-96, Vernacular Architect, 27, 81-4

Howard, R E, Laxton, R R, and Litton, C D, 1996b Tree-ring Analysis of Timbers from The Masters House, Saltisford, Warwickshire, Anc Mon Lab Rep, 30/1996

Miles, D H and Worthington, M J, 1999 Tree-ring dates, Vernacular Architect, 30, 98113

Miles, D H, 2007 The Tree-Ring dating of the White Tower, HM Tower of London (TOL99 and TOL100), London Borough of Tower Hamlets, EH Res Dep Rep Ser, 35/2007

Tyers, I, 1997 Tree-ring Analysis of Timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/1997

ACKNOWLEDGEMENTS

The Laboratory and George Dawson would like to thank Professor John Beckett and Dr Chris Brooke for the information on the Southwell and Nottingham Church History website. Dr Brooke also supplied the photograph used on the cover of this report. The drawings of the bellframe were produced from a visit in 1991 and are as accurate as the incomplete measurements taken at that time; the later additions are not shown other than the replacement transom

Table 1: Details of samples taken from the bellframe at the Old Church (St Michael), Bramcote, Nottinghamshire

Sample number	Sample location	*Total rings	**Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
BRC-C01	South head beam	67	18c(+3-4 rings losts)	1520	1568	1586
BRC-C02	West head beam	62	h/s	1504	1565	1565
BRC-C03	East head beam	98	--	----	----	----
BRC-C04	East post, frame D	98	--	1393	----	1490
BRC-C05	East post, frame C	152	32c(+3-4 rings lost)	1435	1554	1586
BRC-C06	West post, frame C	60	--	1464	----	1523
BRC-C07	West post, frame B	118	--	1442	----	1559
BRC-C08	East post, frame B	NM	--	----	----	----
BRC-C09	West post, frame A	120	--	1454	1556	1573
BRC-C10	East post, frame A	44	--	1457	----	1500
BRC-C11	East brace, frame C	52	13c	1530	1568	1581
BRC-C12	East brace, frame D	62	18c	1519	1562	1580

*NM = not measured
$* * \mathrm{~h} / \mathrm{s}=$ the heartwood/sapwood boundary ring is the last-measured ring on the sample
$c(+x$ rings lost $)=$ complete sapwood on timber, all or part lost during the sampling process with estimated number of lost rings (when known) in brackets

Table 2: Results of the cross-matching of site sequence BRCCSQ01 and relevant reference chronologies when the firstmeasured ring date is AD 1504 and the last-measured ring date is AD 1586

Reference chronology	t-value	Span of chronology	Reference
Dimple Farm, Matlock, Derbyshire	7.2	AD 1497-1593	Howard et al 1996a
Sinai Park, Staffordshire	6.9	AD 1227-1750	Tyers 1997
Church of St Nicholas, Bringhurst. Leicestershire	6.2	AD 1502-1687	Arnold et al 2005
White Tower, Tower of London, London	6.2	AD 1463-1616	Miles 2007
Newnham Hall Farm House, Oxfordshire	6.2	AD 1412-1614	Arnold and Howard 2006 unpubl)
Colston Bassett Church, Nottinghamshire	6.1	AD 1465-1609	Howard et al 1995 a
Bodleian Library, Oxfordshire	6.1	AD 1395-1610	Miles and Worthington 1999

Table 3: Results of the cross-matching of site sequence BRCCSQ02 and relevant reference chronologies when the firstmeasured ring date is AD 1393 and the last-measured ring date is AD 1586

Reference chronology	t-value	Span of chronology	Reference
Ordsall Hall, Salford, Greater Manchester	8.0	AD 1385-1512	Howard et al 1994
Church Farm, Thope in the Glebe, Nottinghamshire	7.2	AD 1422-1521	Esling et al 1989
Offerton Hall, Offerton, Derbyshire	7.2	AD 1401-1592	Howard et al 1995 b
Wakelyn Old Hall, Hilton, Derbyshire	7.1	AD 1415-1573	Arnold et al 2008
Master House, Saltisford, Warwickshire	7.1	AD 1412-1499	Howard et al 1996 b
The Gables, Little Carlton, Nottinghamshire	6.9	AD 1389-1516	Howard et al 1986
Tithe Barn, Bolton Abbey, West Yorkshire	6.6	AD 1350-1518	Arnold et al 2015

Figure 1: Map to show the general location of Bramcote, circled (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright

Figure 2: Map to show the location of the Old Church, Bramcote, arrowed (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, OCrown Copyright)

Figure 3: Truss from the treble pit

Figure 4: Later transom brace in treble pit

Figure 5: Plan of bellframe, showing truss labelling and the location of samples BRC-CO1 and BRC-C03 (George Dawson)

Figure 6: Truss A, showing the location of samples BRC-CO9 and BRC-C10 (George Dawson)

Figure 7: Truss B, showing the location of samples BRC-C07 and BRC-C08 (George Dawson)

Scale

Figure 8: Truss C. showing the location of samples BRC-C05, BRC-C06, and BRC-C11 (George Dawson)

Figure 9: Truss D, showing the location of samples BRC-CO1, BRC-CO4, and BRC-C12 (George Dawson)

Relative

Figure 10: Bar diagram of samples in site sequence BRCCSQ01

Figure 11: Bar diagram of samples in site sequence BRCCSQ02

Relative

Figure 12: Bar diagram of all dated samples

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

BRC-C01A 40
481401514392498534320523426410407292230173230205168200285301
273327250299258263258269312220262270257244220229224171233236
BRC-C01B 47
270309203244329375560474397347258414472449423441270388498435
433443353423358279346247459266329314221195194318379233390542
485356453415453388326
BRC-C01C 40
209297266315414251244188284305178348591463410373343362213269 188185139113132122108899711214611116320913712012713185304 BRC-C02A 62
262226194216196211161283286266238319410262381388275234182180 263161226226217333286478381217273289255195186194298205137208 145153170137189166191264179151157247246201247203245213253240 248238
BRC-C02B 62
262229187201184209161266288276233326425255389374282233185186 217149216215224353281510368221267295255199172185262217140217 136142176130190170197262188143153273244195237195262205269263 247260
BRC-C03A 98
158136148115134164139187170173139183140146135119144125121139 10814215712411014613712513610885615153474237363831
$273640393045374637303131 \quad 18 \quad 3133435086$ 444761605973907172116108978271130180158275205192 193241236226340440435322242217166217254300321111130110 BRC-C03B 98
162135149119135166133186168168135179145142140114145119129143 12412415310612712513610811912291604946484836363638
 414763615381907169117104997573134176161271201204 191248238230326471430328244217173215267281319104122118 BRC-C04A 98
247262260238234284241229211245297269222228132148242242176221 196160124134198248171244124116134170169172158135155147152163 11613911010210295761201141311461541316298116134139133108 1021241271319880817988100118102136281363453381288309311 241272394366253250363283325308323212242220337280178191 BRC-C04B 98
255264255244238270237223211234276303263226167137232238174209 192164115137195245169247127115130175175175149141149139155168 119135112106999580118118135142159124629911213715113396 9611712212411073707598100118106134301361456379282326291 230268403379255229348279330316309216220216341294178191 BRC-C05A 152
176249232230262320289301328340253236195194204245330294273366 259264254198212200233237261212204217191208134124162178222133

115104867185114138139174116113108122102809568576666
$\begin{array}{llllllllllllllllll}59 & 74 & 77 & 62 & 59 & 69 & 50 & 48 & 72 & 87 & 69 & 70 & 55 & 52 & 60 & 73 & 62 & 66 \\ 58 & 63\end{array}$
5789708393788394685848605751314363716643

 424437477198118626273151151
BRC-C05B 152
211251238224269311291298320357259246196187205253325292264342 259267258201209201230234262207195228198209130120166177211134 1121048575871191401341731201061081301068010490496676 $\begin{array}{llllllllllllllll}73 & 70 & 74 & 61 & 63 & 58 & 58 & 54 & 73 & 77 & 56 & 78 & 53 & 54 & 63 & 74 \\ 58 & 61 & 60 & 69\end{array}$
 $\begin{array}{lllllllllllllllll}46 & 44 & 47 & 50 & 58 & 43 & 44 & 31 & 39 & 41 & 41 & 48 & 59 & 58 & 49 & 55 & 67 \\ 62 & 74 & 61\end{array}$ $45484446513746485140254851 \quad 62558366745048$ 4741315170104112625974144140
BRC-C06A 60
1551141111231841383455512955464123244743514445
 $\begin{array}{llllllllllllllllll}74 & 47 & 37 & 28 & 35 & 49 & 40 & 58 & 55 & 62 & 60 & 57 & 67 & 119 & 165 & 172 & 125 & 213 \\ 237\end{array}$ BRC-C06B 60
120961101251851293559514854414331234043484347 40404074395350444444563342373562535456 65474731334842605560675267119153193192133213230 BRC-C07A 118
276352388248173188193175217271257208216213307232195163177173
14615511189102106178132625976556275785560666878
$\begin{array}{lllllllllllllllll}62 & 80 & 67 & 71 & 77 & 89 & 59 & 62 & 70 & 74 & 57 & 59 & 59 & 54 & 57 & 39 & 40 \\ 41 & 43 & 42\end{array}$
$\begin{array}{lllllllllllllllll}38 & 46 & 48 & 50 & 47 & 33 & 30 & 45 & 35 & 33 & 34 & 38 & 46 & 43 & 37 & 45 & 50 \\ 55 & 54 & 45\end{array}$
65577361106117165174170248191159125160180124174168192147
9880117154163162194181185219204245183209213121186189
BRC-C07B 118
270331384255167191205181217266251201234216316225195168196162
13613110610099108177138516662526373815955656878
$\begin{array}{llllllllllllllll}66 & 74 & 68 & 60 & 85 & 78 & 76 & 66 & 67 & 63 & 61 & 58 & 55 & 57 & 60 & 40 \\ 41 & 42 & 36 & 40\end{array}$
4342574444353837343636434140404257515653
56607062102113166170181249193154127164170125155148200152
11094110148152161178179185219205236191196211131187197
BRC-C09A 120
19727526922122620320021328922020724722819421113314215491156
108146114114127127138152146153153152144213201170193137172178
151181162183169136148122106117102118125859313610689106100
1089012112316513911417813911412280115967174637995102
69897489911201251008091108119133125127111112127131139
9483848011110010010811189104751029510295112929599
BRC-C09B 120
229275267229211187193228288219230230224190169115135171130157 104144117115123133137158147153146159139221191178197139171170 15517516218315714114712011211396130124849413810690104100 858110011514515210817513611811978108967966638310285 6187719090116125102758998127129115114118152127127130 10291788211410099108104991007296971199197106100108 BRC-C10A 44
1378388108121114186183267510494539523370371371300384451484

335298611391444501435266384334585410276238170154182183356398 285226176355
BRC-C10B 44
1508486106114115192181302477480538519377363361296376467483 345299637374428510432269357319590402285229164160176185352386 310215170436
BRC-C11A 52
290405345215270287344299248248322289169232213205234180291337 255246195186175283264238316316327250265271228262162179203170 191185132148124157125123106156153171
BRC-C11B 52
281414338204254288303307246254333287171236225200238190283304 257253205184168288267248299321328255279259230267199186200167 175188146150111152139118111149159177
BRC-C12A 62
142146149167189287173321222216266168332253176164188131108116 1021067277757779998712095100104856583149155123217 22420016320020523016412410410075849265968279706754 7483
BRC-C12B 62
149147153163181279174304223217255163346251172156192123122108 909379757485709978129112102108856689143136150191 22320317119220022016212599108858079841798469724479 88112

