\square

THE BELLFRAME
 ST MARY AND ALL SAINTS' CHURCH
 HAWKSWORTH
 NOTTINGHAMSHIRE

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS

Alison Arnold, Robert Howard, and George Dawson
NGR: SK 7528343457
MARCH 2015

LOTTERY FUNDED

The University of Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF ST MARY AND ALL SAINTS' CHURCH, HAWKSWORTH, NOTTINGHAMSHIRE

ALISON ARNOL
ROBERT HOWARD
GEORGE DAWSON

SUMMARY

Dendrochronological analysis undertaken on samples taken from timbers of the bellframe at this church resulted in the construction of a single site sequence.
Site sequence NBFKSQ01 contains eight samples and spans the period AD 1592-1691.
Interpretation of sapwood suggests felling of all timbers in AD 1694-1719, with construction likely to have followed shortly after.

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF ST MARY AND ALL SAINTS' CHURCH, HAWKSWORTH, NOTTINGHAMSHIRE

INTRODUCTION

Parts of the Grade II* listed church of St Mary and All Saints' Church located in the Nottinghamshire village of Hawkworth (Figs 1 \& 2) are thought to date back to the Norman period, as testified by the carved tympanum, re-set on the south side of the tower. It comprises a chancel, nave with a north aisle and red brick west tower; the nave was largely rebuilt in AD 1812-13, the north aisle in AD 1837, and the chancel in AD 1851 when the rest were also renewed. The west tower is seventeenth century in date (http://southwellchurches.nottingham.ac.uk/hawksworth/main/hindex.php).

Bellframe

The oak bellframe for four bells is of mixed trusses, some jack-braced and others not, Pickford Groups 6.A and 6.B, with orientation being a mirror image of plan Group 4.2 (Figs 3 \& 4). It sits on a substantial timber floor, which in turn sits on four beams, orientated east to west, which enter the north and south walls; two are adjacent to the north and south walls and the other two are equally spaced between them. Beneath these beams are two substantial beams, orientated north to south, again equally spaced between the east and west walls. All timbers are pegged together through the mortise and tenon joints with two pegs.

On the top sill of the outer south truss (truss B) is incised ' 18 MH 15 '. As the frame was thought to date from circa AD 1800, it was thought likely that this represented the date of the frame and the initials of either the maker or a churchwarden.

The bells

Inscribed:

1. GOD SAVE HIS CHVRCH R DVBELDAY I BAGVLAY WARDENS 1698
2. Blank.
3. J: TAYLOR \& C.. FOUNDERS LOUGHBOROUGH 1873

Physical data:

	Diameter(cm)	Weight (Cwt)	Note
Treble.	70.5	c 3.5 cwt	D
2.	77	c 5 cwt	C
Tenor.	97.5	10.2 .0	A

The tenor was added to the ring in AD 1873 and was not a recast of an older bell. The treble is the work of William Noone of Nottingham, whilst the second un-inscribed bell could be dated to the mid-eighteenth century on stylistic grounds, though it is completely different to the treble.

The AD 1764 Terrier mentions 2 bells.

PRINCIPLES OF TREE-RING DATING

Tree-ring dating relies on a few simple, but fundamental, principles. Firstly, as is commonly known, trees (particularly oak trees) grow by adding one, and only one, growth-ring to their circumference each, and every, year. Each new annual growth-ring is added to the outside of the previous year's growth just below the bark. The width of this annual growth-ring is largely, though not exclusively, determined by the weather conditions during the growth period (roughly March to September). In general, good conditions produce wider rings and poor conditions produce narrower rings. Thus, over the lifetime of a tree, the annual growth-rings display a climatically determined pattern. Furthermore, and importantly, all trees growing in the same area at the same time will be influenced by the same growing conditions and the annual growth-rings of all of them will respond in a similar, though not identical, way.

Secondly, because the weather over any number of consecutive years is unique, so too is the growth pattern of the tree. The pattern of a short period of growth, 20 or 30 consecutive years, might conceivably be repeated two or even three times in the last one thousand years. A short pattern might also be repeated at different time periods in different parts of the country because of differences in regional micro-climates. It is less likely, however, that such problems would occur with the pattern of a longer period of growth, that is, anything in excess of 60 years or so. In essence, a short period of growth, anything less than 50 rings, is not reliable, and the longer the period of time under comparison the better.

The third principal of tree-ring dating is that, until the early-to mid-nineteenth century, builders of timber-framed houses usually obtained all the wood needed for a given structure by felling the necessary trees in a single operation from one patch of woodland
or from closely adjacent woods. Furthermore, and contrary to popular belief, the timber was used "green" and without seasoning, and there was very little long-term storage as in timber-yards of today. This fact has been well established from a number of studies where tree-ring dating has been undertaken in conjunction with documentary studies. Thus, establishing the felling date for a group of timbers gives a very precise indication of the date of their use in a building.

Tree-ring dating relies on obtaining the growth pattern of trees from sample timbers of unknown date by measuring the width of the annual growth-rings. This is done to a tolerance of $1 / 100$ of a millimetre. The growth patterns of these samples of unknown date are then compared with a series of reference patterns or chronologies, the date of each ring of which is known. When a sample "cross-matches" repeatedly at the same date against a series of different relevant reference chronologies the sample can be said to be dated. The degree of cross-matching, that is the measure of similarity between sample and reference is denoted by a "t-value"; the higher the value the greater the similarity. The greater the similarity the greater is the probability that the patterns of the samples and references have been produced by growing under the same conditions at the same time. The statistically accepted fully reliable minimum t-value is 3.5 .

However, rather than attempt to date each sample individually it is usual to first compare all the samples from a single building, or phases of a building, with one another, and attempt to cross-match each one with all the others from the same phase or building. When samples from the same phase do cross-match with each other they are combined at their matching positions to form what is known as a "site chronology". As with any set of data, this has the effect of reducing the anomalies of any one individual (brought about in the case of tree-rings by some non-climatic influence) and enhances the overall climatic signal. As stated above, it is the climate that gives the growth pattern its distinctive pattern. The greater the number of samples in a site chronology the greater is the climatic signal of the group and the weaker is the non-climatic input of any one individual.

Furthermore, combining samples in this way to make a site chronology usually has the effect of increasing the time-span that is under comparison. As also mentioned above, the longer the period of growth under consideration, the greater the certainty of the crossmatch. Any site chronology with less than about 55 rings is generally too short for satisfactory analysis.

SAMPLING STRATEGY

A total of ten samples were taken from various timber elements with each sample being given the code NBF-K and numbered 01-10. The location of all samples was noted at the
time of sampling and has been marked on Figures 5-12. Further details can be found in Table 1.

ANALYSIS \& RESULTS

At this stage two of the samples (NBF-K03 and NBF-K06) were found to have too few rings for secure dating to be a possibility and so were rejected prior to preparation. The remaining eight samples were prepared by sanding and polishing and their growth-ring widths measured. The growth-ring widths were then compared with each other resulting in all eight samples matching to form a single group.

The eight samples were combined at the relevant offset positions to form NBFKSQ01, a site sequence of 100 rings (Fig 13). This site sequence was then compared against a series of relevant reference chronologies for oak where it was found to match consistently and securely at a first-measured ring date of AD 1592 and a last-measured ring date of AD 1691. The evidence for this dating is given by the t-values in Table 2.

INTERPRETATION

Eight of the samples taken from this bellframe have been successfully dated. Although none of these samples have complete sapwood, seven do have the heartwood/sapwood boundary ring which in all cases can be seen to be broadly contemporary (Fig 13). The average heartwood/sapwood boundary ring date for these seven samples is AD 1679, allowing an estimated felling date to be calculated for the timbers represented to within the range AD 1694-1719. The final dated sample (NBF-K08) does not have the heartwood/sapwood boundary ring date and so an estimated felling date cannot be calculated for it. However, with a last-measured ring date of AD 1663, this would be estimated to be AD 1679 at the earliest, a terminus post quem felling which does not preclude this sample having also been felled in AD 1694-1719 with the rest of the timber.

Felling date ranges have been calculated using the estimate that 95% of mature oak trees in this region have between 15 and 40 sapwood rings.

DISCUSSION

Prior to the tree-ring dating being undertaken this bellframe was thought to date to c AD 1800 on the basis of stylistic grounds and an inscription on one of the top cills. The dendrochronology has demonstrated that the timber utilised within the construction of the bellframe was felled in AD 1694-1719, with construction likely to have followed shortly after, making the frame somewhat earlier than previously thought and probably contemporary with the treble bell dated to AD 1698.

BIBLIOGRAPHY

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-ring analysis of Oak Timbers from the Chapter House, Worcester Cathedral, Worcester, Cent for Archaeol Rep, 65/2004

Arnold, A J, Howard, R E, and Litton, C D, 2008 Nottingham Tree-Ring Dating Laboratory, Vernacular Architect, 39, 119-28

Arnold, A J, and Howard, R E, 2010 unpubl 5 The Green, Lyddington, Rutland, unpubl computer file LDTASQ01, NTRDL

Arnold, A and Howard, R, 2013 Oakham Castle, Oakham, Rutland: tree-ring analysis of timbers, EH Res Dept Rep Ser, 23/2013

Hawksworth, http://southwellchurches.nottingham.ac.uk/hawksworth/main/hindex.php
Howard, R E, Laxton, R R, and Litton, C D, 2005 Tree-ring analysis of timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for Archaeol Rep, 40/2005

Laxton, R R, Litton, C D, and Simpson, W G, 1984 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in Eastern and Midland England, Vernacular Architect, 15, 65-8

ACKNOWLEDGEMENTS

The Laboratory and George Dawson would like to thank Anne Dunn for facilitating access and Professor John Beckett and Dr Chris Brooke for the information on the Southwell and Nottingham Church History website. Thanks are also given to Dr Chris Brooke for his comments on early drafts of this report. The research was undertaken as part of the Southwell and Nottingham Church History Project and this element was joint funded by The Heritage Lottery Fund and Nottinghamshire County Council.

Table 1: Details of samples taken from the bellframe at St Mary and All Saints' Church, Hawksworth, Nottinghamshire

Sample number	Sample location	*Total rings	**Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
NBF-K01	Top cill, truss D	54	h/s	1629	1682	1682
NBF-K02	East brace, truss F	88	13	1604	1678	1691
NBF-K03	West brace, truss F	NM	--	----	----	----
NBF-K04	Top cill, truss A	81	h/s	1604	1684	1684
NBF-K05	South brace, truss A	54	07	1632	1678	1685
NBF-K06	North jack brace, truss A	NM	--	----	----	----
NBF-K07	Top cill, truss E	48	02	1631	1676	1678
NBF-K08	North brace, truss G	60	--	1604	----	1663
NBF-K09	Top cill, truss C	77	03	1605	1678	1681
NBF-K10	Middle brace, truss C	90	05	1592	1676	1681

*NM = not measured
**h/s = the heartwood/sapwood boundary ring is the last-measured ring on the sample

Table 2: Results of the cross-matching of site sequence NBFKSQ01 and relevant reference chronologies when the first-ring date is AD 1592 and the last-measured ring date is AD 1691

Reference chronology	t-value	Span of chronology	Reference
Oakham Castle, Rutland	6.3	AD 1598-1737	Arnold and Howard 2013
Bolsover Castle (Riding House). Bolsover, Derbyshire	5.9	AD 1494-1744	Howard et al 2005
13 Hall gate, Diseworth, Leicestershire	5.9	AD 1538-1671	Arnold et al 2008
Wren Wing, Easton Neston, Northamptonshire	5.5	AD 1468-1686	Arnold et al 2008
5 The Green, Lyddington, Rutland	5.5	AD 1566-1678	Arnold and Howard 2010 unpubl
Rufford Mill, Nottinghamshire	5.3	AD 1571-1727	Laxton et al 1984
Chapter House Roof, Worcester Cathedral, Worcestershire	5.1	AD 1558-1660	Arnold et al 2004

Figure 1: Map to show the general location of Hawksworth, circled (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 2: Map to show the location of St Mary and All Saints' Church, arrowed (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: The bellframe, photograph taken from the west

Figure 4: Plan, showing truss labelling (George Dawson)

Figure 5: Truss A, showing the location of samples NBF-K04-06 (George Dawson)

Figure 6: Truss B (George Dawson)

Figure 7: Truss C, showing the location of samples NBF-K09 and NBF-K10 (George Dawson)

Figure 8: Truss D, showing the location of sample NBF-K01 (George Dawson)

Truss E-E

Figure 9: Truss E, showing the location of sample NBF-K07 (George Dawson)

Figure 10: Truss F, showing the location of samples NBF-K02 and NBF-K03 (George Dawson)

Truss G-G

Figure 11: Truss G, showing the location of sample NBF-K08 (George Dawson)

Truss H-H

Figure 12: Truss H (George Dawson)

Figure 13: Bar diagram to show the position of samples in site sequence NBFKSQ01

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
NBF-K01A 54
    56 36 46103162122716378118131149175156234141116152137125
    1091301239112916121215912315694131154142169148230170193202
    168243245202230281197163205225401307285431
NBF-K01B 54
    6338391111591219262103116118151185144223152126165133109
    1171281179611915922215711615998129152121174156236157173189
    175243228184236278198166200257365 303288425
NBF-K02A }8
299199173223178 254224 245130 94 72 88 95 88 97 83 94 83 99 90
    8567 86237554425174159319352225146100166169253 310424245297
247 302182186417200288232217230346506258302268291361310291227
244316212291253212381345251 340 371270211202204 325229231 317 377
221285 335 289282178172232
NBF-K02B 88
307197176227177 256227210 130 98 68 89 83 94 104 85 92 85 99 96
83748124355848718115132734724113497180178251305439258302
259294218188410201299210220242352505273 312294 301 352 300 294230
231319212282257216374334245 331 373268214204210331229228 325 389
238282332228296181170230
NBF-K04A }8
371274 326 331265223377273 317201177 159145231225188215171232233
190176122373 337253170164229275192172123141158116133 81 96 85
849814016916013311410271102114200182183188131126157177 175
187177129120112145178252152170224140112199246308208 214219191
125
```

NBF-K04B 81
385292356350273230379290316194177164158233231193223181236263
186162128363342253184171226283193168125141160113135789680
8195149163156135119957397125205186176182125129158176175
192173129121113148181249152174224132129203257309227187235177
127
NBF-K05A 54
219298215196212294226295443397330325206215260283393331262171
143159199331251203195190211217229265230231170208251290313250
267255278171156204285314253224273218211183
NBF-K05B 54
259299215189208275218290440403329333204216256281390328252170
144164199333256206205168220218230257236227174204245293317254
262253278170160204293298264210279209218198
NBF-K07A 48
244312376160135193170152174317396252291180237227208389241351

203216160291515293249225208245334287211175170162211257213412 309209220225194180239247
NBF-K07B 48
252319368159134180172156177316401246303180245231189388242338 209227182287514294225228203245333297214175173161203250231412 308211219229197184229258
NBF-K08A 60
203217195279259202151141149186141908257536542403542 384046521654497238158322347262194293287195354544600422500 368419561472667458333227160201381640606455370312403407340346 NBF-K08B 60
2112471922702712051381531591911349510054625141413443 363034558669508248177325338263200316312194366554607433475 386423551457664446323222163196391626590456385301374391322345 NBF-K09A 77
169226189202176140156133128138134889278928283726352 41385692564757808061123103120191118185209178183218 172244211230199182187142159211277241202261184173205195236207 225168157193201211222156227247220189238276226258177 NBF-K09B 77 182237210200184147162144138135142998583919077796152 413858108474463818469115104131194124194214176194238 175256204236196181186150147227281238200270175190204198237210 227170161189204210224159226247222198234277285210166 NBF-K10A 90
164139217182165189211275277235285329334242327300238258264197 129114140151102101161153147121125237123105115510949614176239 248330207192126164202265272265149180149207204182346208281217 173148256363249256238170162279270167187214166176267246328226 202230192191174226187185255161
NBF-K10B 90
167172181114125167207271265251263352339245318303248267283189 13211512816111498159153155120124238124103117514947624176234 251345227198133172190262275264145178155207214184338202280217 178150257375249237256170161263281176184222159178266243332241 206222206189178241188207236165

