

THE BELLFRAME CHURCH OF ST MARTIN NORTH LEVERTON NOTTINGHAMSHIRE

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS

Alison Arnold, Robert Howard, and George Dawson
NGR: SK 7871282261
FEBRUARY 2015

Diocese of Southwell \& Nottingham

LOTTERY FUNDED

The University of Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE bellframe of the church of st martin, north leverton, NOTTINGHAMSHIRE

ALISON ARNOLD
ROBERT HOWARD
GEORGE DAWSON

SUMMARY

Dendrochronological analysis undertaken on samples taken from timbers of the bellframe at this church resulting in the construction of a single site sequence.
Site sequence NBFCSQ01, contains nine samples and spans the period AD 1596-1710.
Interpretation of the sapwood suggests felling of dated timbers occurred in AD 1708/1710, with construction likely to have followed shortly after.

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF THE CHURCH OF ST MARTIN, NORTH LEVERTON, NOTTINGHAMSHIRE

INTRODUCTION

The Grade I listed parish church of St Martin is located in the village of North Leverton in north Nottinghamshire (Figs 1 \& 2). Thought to date back to the twelfth century the church underwent comprehensive restoration in the nineteenth century. It consists of nave, south aisle, chancel, west tower, and south porch (http://southwellchurches.nottingham.ac.uk/north-leverton/hintro.php).

The Bell frame

Originally for four bells (the side pit has been removed), the extant frame is for three bells and is of double jack-braced design (Pickford, Group 6.D; Figs 3-5). It sits on three base beams, which run from the north to south walls and at each end sit on timbers which are on the off-sets along the north and south walls. The cut-outs in the top sills by the bearings are for the headstock hoops to fall into in the event of gudgeon failure.

It was built in one phase and was thought to date from the recasting of either the treble (AD 1694) or tenor bells (AD 1718; AD 1661). All joints are mortise and tenon joints, pegged with oak pegs.

The Bells

The inscriptions:
1(i). GOD [46] SAVE [46] HIS CHVRCH [46] 1718 [46]
(ii). [50] repeated

2(i). GOD SAVE THE KING 1661
(ii).
[53]
3(i). GOD [46] SAVE [46] HIS [46] CHVRCH [46] RM [46] IS [46] 1694 [46]
(ii). [50] repeated

The treble and tenor bells are the work of William Noone of Nottingham and the second is by George I Oldfield using his less common badge with the rounded G.

Badge numbers are taken from the Church Bells of Nottinghamshire.

Physical data:

	Diameter(cm)	Weight	Note
Treble.	69.5	c 3.5 cwt	-
2.	73.5	c 4.5 cwt	1080 Hz
Tenor.	79.5	c 6 cwt	1005 Hz

PRINCIPLES OF TREE-RING DATING

Tree-ring dating relies on a few simple, but fundamental, principles. Firstly, as is commonly known, trees (particularly oak trees) grow by adding one, and only one, growth-ring to their circumference each, and every, year. Each new annual growth-ring is added to the outside of the previous year's growth just below the bark. The width of this annual growth-ring is largely, though not exclusively, determined by the weather conditions during the growth period (roughly March to September). In general, good conditions produce wider rings and poor conditions produce narrower rings. Thus, over the lifetime of a tree, the annual growth-rings display a climatically determined pattern. Furthermore, and importantly, all trees growing in the same area at the same time will be influenced by the same growing conditions and the annual growth-rings of all of them will respond in a similar, though not identical, way.

Secondly, because the weather over any number of consecutive years is unique, so too is the growth pattern of the tree. The pattern of a short period of growth, 20 or 30 consecutive years, might conceivably be repeated two or even three times in the last one thousand years. A short pattern might also be repeated at different time periods in different parts of the country because of differences in regional micro-climates. It is less likely, however, that such problems would occur with the pattern of a longer period of growth, that is, anything in excess of 60 years or so. In essence, a short period of growth, anything less than 50 rings, is not reliable, and the longer the period of time under comparison the better.

The third principal of tree-ring dating is that, until the early-to mid-nineteenth century, builders of timber-framed houses usually obtained all the wood needed for a given structure by felling the necessary trees in a single operation from one patch of woodland or from closely adjacent woods. Furthermore, and contrary to popular belief, the timber was used "green" and without seasoning, and there was very little long-term storage as in timber-yards of today. This fact has been well established from a number of studies where tree-ring dating has been undertaken in conjunction with documentary studies. Thus, establishing the felling date for a group of timbers gives a very precise indication of the date of their use in a building.

Tree-ring dating relies on obtaining the growth pattern of trees from sample timbers of unknown date by measuring the width of the annual growth-rings. This is done to a tolerance of $1 / 100$ of a millimetre. The growth patterns of these samples of unknown date are then compared with a series of reference patterns or chronologies, the date of each ring of which is known. When a sample "cross-matches" repeatedly at the same date against a series of different relevant reference chronologies the sample can be said to be dated. The degree of cross-matching, that is the measure of similarity between sample and reference is denoted by a "t-value"; the higher the value the greater the similarity. The greater the similarity the greater is the probability that the patterns of the samples and references have been produced by growing under the same conditions at the same time. The statistically accepted fully reliable minimum t -value is 3.5 .

However, rather than attempt to date each sample individually it is usual to first compare all the samples from a single building, or phases of a building, with one another, and attempt to cross-match each one with all the others from the same phase or building. When samples from the same phase do cross-match with each other they are combined at their matching positions to form what is known as a "site chronology". As with any set of data, this has the effect of reducing the anomalies of any one individual (brought about in the case of tree-rings by some non-climatic influence) and enhances the overall climatic signal. As stated above, it is the climate that gives the growth pattern its distinctive pattern. The greater the number of samples in a site chronology the greater is the climatic signal of the group and the weaker is the non-climatic input of any one individual.

Furthermore, combining samples in this way to make a site chronology usually has the effect of increasing the time-span that is under comparison. As also mentioned above, the longer the period of growth under consideration, the greater the certainty of the crossmatch. Any site chronology with less than about 55 rings is generally too short for satisfactory analysis.

SAMPLING STRATEGY

A total of nine samples were taken from various timber elements of this bellframe. Each sample was given the code NBF-C and numbered 01-09. The location of all samples was noted at the time of sampling and has been marked on Figures 6-11. Further details can be found in Table 1.

ANALYSIS \& RESULTS

All nine samples were prepared by sanding and polishing and their growth-ring width measured. These growth-ring widths were then compared with each other following Laboratory procedures, resulting in all nine samples matching to form a single group.

These nine samples were then combined with each other at the relevant offset positions to form NBFCSQ01, a site sequence of 115 rings (Fig 12). This site sequence was compared against a series of relevant oak chronologies where it was found to match at a first-ring date of AD 1596 and a last-measured ring date of AD 1710. The evidence for this dating is given by the t-values in Table 2.

INTERPRETATION

The estimate that 95% of mature oak trees from this region have between 15 and 40 sapwood rings has been used when calculating felling date ranges.

Nine samples have been successfully dated, three of which (NBF-C04, NBF-C07, and NBFC08) have complete sapwood. Samples NBF-C07 and NBF-C08 have the last-measured ring (and hence felling) date of AD 1708, whereas NBF-C04 was felled slightly later, in AD 1710. The other six samples all have the heartwood/sapwood boundary ring, the date of which is in all cases broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1690, allowing an estimated felling date to be calculated for the six timbers represented to within the range AD 1707-30 (allowing for sample NBF-C09 having a last-measured ring date of AD 1706 with incomplete sapwood). One of these samples, NBF-C03, has the last-measured ring date of AD 1708 and so must have been felled after this date, but could have been felled in AD 1710. The rest of the timber could have been felled in either AD 1708 or AD 1710.

DISCUSSION

Tree-ring analysis has shown that the bellframe at St Martin's Church contains timber felled in AD 1707-30 with at least two beams known to date to AD 1708 and one to AD 1710. These results suggest construction occurred in the early-eighteenth century and utilised timber sourced either as the result of an extended period of felling over a couple of years or incorporating stockpiled timber. It is possible that the frame dates to the casting of the AD 1718 tenor bell. Alternatively, it may be that the frame is a couple of years earlier than the bell and increased ringing due to the new frame caused the tenor bell to crack necessitating the casting of a new one.

BIBLIOGRAPHY

Arnold, A J, and Howard, R E, 2007 unpubl Tree-ring analysis of timbers from Highfield, 50 Well St. Langham, Rutland, Nottingham Tree-ring Dating Laboratory, unpublished computer file LGHASQ01

Arnold, A J, and Howard, R E, 2007 Leicester's Gatehouse, Kenilworth Castle, Kenilworth, Warwickshire; Tree-Ring Analysis of Timbers, Centre for Archaeol Rep, 8/2007

Arnold, A J, Howard, R E, and Litton, C D, 2008 Nottingham Tree-ring Dating Laboratory, Vernacular Architect, 39, 119-28

Arnold, A J and Howard, R E, 2011 All Saints' Church, North Scarle, Lincolnshire: tree-ring analysis of timbers of the Bellframe and Belfry Floor, Res Dept Rep Ser, 44/2010

Howard, R E, Laxton, R R, and Litton, C D, 1999 Tree-ring analysis of timbers from Bretby Hall, Bretby, Derbyshire, Anc Mon Lab Rep, 43/99

Howard, R E, Laxton, R R, and Litton, C D, 2005 Tree-ring analysis of timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for Archaeol Rep, 40/2005

North Leverton, http://southwellchurches.nottingham.ac.uk/north-leverton/hintro.php
Tyers, I, 1997 Tree-ring Analysis of Timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

ACKNOWLEDGEMENTS

The Laboratory and George Dawson would like to thank Mrs J Sutherland for facilitating access and Professor John Beckett and Dr Chris Brooke for the information on the

Southwell and Nottingham Church History website. Thanks are also given to Dr Chris Brooke for his comments on early drafts of this report. The research was undertaken as part of the Southwell and Nottingham Church History Project and this element was joint funded by The Heritage Lottery Fund and Nottinghamshire County Council.

Table 1: Details of samples taken from the bellframe at the Church of St Martin, North Leverton, Nottinghamshire

Sample number	Sample location	Total rings	*Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
NBF-C01	Top cill, truss D	80	h/s	1602	1681	1681
NBF-C02	Top cill, truss C	89	01	1602	1689	1690
NBF-C03	Top cill, truss B	113	12	1596	1696	1708
NBF-C04	Top cill, truss F	104	23C	1607	1687	1710
NBF-C05	Top cill, truss F	75	12	1629	1691	1703
NBF-C06	Top cill, truss E	95	15	1611	1690	1705
NBF-C07	East lower strut, truss D	103	30C	1606	1678	1708
NBF-C08	East brace, truss C	103	21C	1606	1687	1708
NBF-C09	South strut, truss F	87	09	1620	1697	1706

**h/s = the heartwood/sapwood boundary ring is the last-measured ring on the sample
$\mathrm{C}=$ complete sapwood retained on sample, last-measured ring is the felling date

Table 2: Results of the cross-matching of site sequence NBFCSQ01 and relevant reference chronologies when the first-measured ring date is AD 1596 and the last-measured ring date is AD 1710

Reference chronology	t-value	Span of chronology	
Bolsover Castle (Riding School), Derbyshire	9.4	AD 1494-1744	Reference
Bretby Hall, Bretby, Derbyshire	9.3	AD 1494-1719	Howard et al 2005
Sinai Park, Burton-on-Trent, Staffordshire	8.9	AD 1227-1750	Howard et al 1999
Wren Wing, Easton Neston, Northamptonshire	6.8	AD 1468-1686	Tyers 1997
Highfield, Langham, Rutland	6.8	AD 1556-1681	Arnold et al 2008
North Scarle (bellframe), Lincolnshire	6.3	AD 1602-1716	Arnold and Howard 2007 unpubl
Kenilworth Castle Gatehouse, Warwickshire	6.1	AD 1623-1727	Arnold and Howard 2010

Figure 1: Map to show the general location of North Leverton, circled (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright

Figure 2: Map to show the location of Church of St Martin, arrowed (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: Bellframe (Dr Chris Brooke)

Figure 4: Plan, showing truss labelling (George Dawson)

Figure 5: Truss A

Scale

Figure 6: Truss A, showing the location of sample NBF-C04

Scale

Figure 7: Truss B, showing the location of sample NBF-C03 (George Dawson)

Scale

Figure 8: Truss C, showing the location of samples NBF-C02 and NBF-C08 (George Dawson)

Figure 9: Truss D, showing the location of samples NBF-C01 and NBF-C07 (George Dawson)

Figure 10: Truss E, showing the location of sample NBF-C06 (George Dawson)

Endframe F-F

Figure 11: Truss F, showing the location of sample NBF-C05 and NBF-C09 (George Dawson)

Relative

Figure 12: Bar diagram of samples in site sequence NBFCSQ01

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
NBF-C01A 80
    1412012049814517920021826023624528918916918317316212810597
    154125119151153171136237179151262179125171126149151107159167
    9110812014116013417815210815682106120 168149129121101164 94
    87 106 85 103 78 122 83 101 58 89 65 61 98 61 68 106 94 85 86 71
NBF-C01B }8
    15719720110114818419821525024723928818916418117415413711197
    152122117151159164142247185142264179117162118153153101151189
    1041111371411611371851541051647810511316315812511811416298
    8511090104 77 122 85 90 65 94 64 58 101 60 69102 95 87 97 78
NBF-C02A 89
    549748760476513564496345291297375 312283 322281210236267 218149
    243 130 109 76 72 70 60 65 39 30 29 19 24 21 23 28 42 42 86 118
    6175624710252524874594541176239289249244155 234154
    149227194192217223184241275 224 336211184222181181210222113152
    201160163149263276205156141
NBF-C02B }8
    538746742469513568493 349296305 380 280 270 322284212231 241183171
    228135102 84 65 69 56 63 42 31 25 17 19 27 26 22 45 40 86 124
    58756548 99 51 55 50 72 6248 39174 237 291 255 243 156 221 144
    1 5 4 2 1 4 1 9 6 1 9 1 2 1 1 2 1 9 1 9 1 2 3 9 2 6 7 2 3 2 3 3 1 2 1 6 1 7 8 2 2 3 1 8 7 1 7 7 1 9 2 2 1 8 1 0 6 1 5 4 ~
    209174180141245286203138159
NBF-C03A 113
    525519 398459418430 357447412283 329279213146170203237206174192
    201192211176180192250234160139163217214243152 84109101 78 75
    6265 83 59 94 104 74 76 65 51 67 51 53 55 49 45 58 59108 176
    190155191176220157162182154186129152230268257236162 223202200
    203230178257210230256268268167283 388 389259165190140 232220227
    255214235241289317173217304237297369231
NBF-C03B }11
536512396451407418404411434281304293220163176201239199182199
194196194192185182237231166146169214204253152 77 108 108 86 80
59 71 72 62 97 99 74 77 64 51 71 55 50 59 53 48 54 63 111170
192157190176221158160181156193126155231272255232163215208195
200219188251224221256261256167283 394 383254178192139243216237
271219240240295292175226305240286 373238
NBF-C04A 104
435379340428381371426352416333 302250291263223 338220 223233234
199202263152 89180113 97 151 175170148 82132149156 122167138 203
201 257 169106 125 79 77 58 86 73 59 94 79 114 77 72 116 101 122 94
111 95 113 88 103 87 72 89 89 72 120122 99 107 76 91 69 107 89 106
116 87 86 71 82 105 86 99 74 77 95 86 94 90 95 100 106151 91 97
```

10313910685
NBF-C04B 104
434379339431389368428357409330291257308255221335231228228243
2012042581499617810810215217716315077137152150120154150200
2232401741051128578589072639280112768011410513195
123931167710986789086671201279899731036910388111
11987836787919089837591977888101961171406890
1151429781
NBF-C05A 75
292143154202140105160265189186128254242129164236320297209343 215142717461178322333148129195218125131148148150200172189
153197152140135113111107160158226166147206140100101181170135 121821671015142484457949014810212896
NBF-C05B 75
292147151201144101160267194187129251226113159233317302208338 233138766964170319337143127177217127124130130129183175192 165229146140145108109111158161218168160206133100105175174127 121861689750494646598994142100128100 NBF-C06A 95
334286304248291324231237210191166226208182186218271215278249 17319214410413514617716011314518714415722120617818617615496 10479664450314656588082549047956654687576
 607782705558637063465038516666
NBF-C06B 95
331284318242287329219238229193166223203186184231262207280243 17018814410614014717416011414718714416023219619018417515399

 637971656449747154595444446969
NBF-C07A 103
2101781881931511451871901772572791511428596112179162127159 1641521612391821151291107292103145120851321519696110129
 678570685873695110971599485831038713890125132 1601191151479611915618511810911614014110112812610213110646 716889
NBF-C07B 103
20917518318819114018618817524130014513688108100159171124164 166153161280179108136109748793131119921271519895116129 128851065641503125528966485144656737775476 648568705972715111463609982841019013990129135 1581211161499211615718212610611214414110413012110213910442 776694
NBF-C08A 103
298356212280269301271246193196228189213184218149225223181210 152173166199182139154145109134999397103128127113113122146

```
172166194176118115 77 91 11917912911310899136117 98 131114148
13714015712714613212190148145 88136136143180120142103103107
139147114103951031281251139186 97109 97 104 97 78 79 109 55
6176 99
NBF-C08B 103
299 352229265 276 294268263193195224191214184223145226 217180218
14617516719818114114914611712911396 90100128126119112127138
17616519015411911675 82134181134117104102132121 99128125149
13813815213914513411786155155 87140142136182122140107101107
14014710910785110130131117 86 9494107 94107 94 75 93 103 58
527477
NBF-C09A 87
262153195253255291301164181293163206231134103100143157146101
116153119151247412311193420188160173142123217191253175188227
167132196206 351281365 321252273219285 218208257191201 308253256
266273401244220 167 256201 165222 171234187121150187145 211169170
312264180173 296190 175
NBF-C09B }8
258155195 2592572972981661812921652042421301049914015415197
111154117161238410 306187419191156176135126227195247176187227
161133197205353281363 325253289201292218206261192198 305 260255
255264 393251223161260204165225174237184120149188145 203175171
3 1 6 2 6 8 1 7 9 1 6 8 2 9 5 1 9 8 1 6 6 ~
```

